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LETTER TO THE EDITOR 

Evanescent and real waves in quantum billiards and Gaussian 
beams 

M V Berry 
H H Wills Physics LabOramry, Tyndall Avenue. Bristol BS8 ITL. UK 

Received 9 February 1994 

Abstract. A mode in a confined planar region can contain evanesEent waves in its plane-wave 
superposition. It would seem impossible to cousmct such a mode by continuation of an external 
altering superposition, which must contain only real plane waves. However, evanescent waves 
can be expressed as the singular limit of an angular superposition of real plane waves. This 
is surprising because, in the direction perpendicular to that in which it decays, an evanescenf 
wave oscillates faster fhan the free-space wavenumber; thus the singular superpositions lie in 
the class of ‘superoscillatory’ functions, which vary faster than any of their Fourier mmponents. 
The superposition is the limit of an exact (i.e. non-paraxial and non-singular) Gaussian beam on 
i o  evanescent side slopes. Far from the axis, the beam posswes, on each side, a line of phase 
singularities (nodal points) which organize the global energy current. The three-dimensional 
generalization provides an explicit elementary consmmion of a superoscillatory function. 

It is known that there are connections between waves confined in a domain B and waves 
scattered from the exterior of B (Doron and Smilansky 199% b, c, Bliimel et al 1992, Dietz 
and Smilansky 1993). Both waves satisfy the Helmholtz equation 

V*@ +k** = 0 (1) 

with boundary condition+for example Dirichlet, as we assume for simplicity in what 
follows. And if for some k the S-mahix has an eigenvalue unity-that is if B is transparent 
to a particular superposition of plane waves travelling in different directions and launched 
from outside-then that same superposition, when continued to the interior of B, is a bound 
state of (1) with eigenvalue kZ. 

Here I will be concerned with the reverse implication, namely that every confined mode 
is associated with an external superposition of plane waves for which B is transparent. At 
first this seems doubtful because of the existence of evanescent plane wave solutions of 
(I), which are inadmissible in global scattering superpositions because they grow infinitely 
in one direction. In two dimensions, with coordinates T (r, e), the plane wave 
solutions of (1) are 

(2) 

If (-n < CY < n), this represents a real plane wave, oscillating (with wavelength 
&/k) in the direction of travel (Y and constant along the wavefronts perpendicular to 
CY; we call the wave real, even though the wavefunction @ is complex, because its 
direction is real. E CY is complex, (2) represents an evanescent plane wave oscillating, 
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( x ,  y) 

*=(T) =exp{ik(xcosa +ysina)]  = exp(ikrcos(8 -a)]. 
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with wavelength 2n/(kcoshImar) which is less than &/k, along the direction Rea, and 
decaying exponentially in the direction Rem +~ /2S ign(ha ) .  The simplest example is 

= exp(iix coshA) exp(-kysinh A). (3) 

It is easy to show that evanescent waves are necessary components of some modes for 
some domains 13, and indeed that there are modes composed entirely of evanescent waves. 
One way is first to specify a k, and constmct an arbitrary superposition of real plane waves 
for which Re* has a smooth closed nodal line L:. This is a mode of (1) for the domain 
B whose boundary is C figure l(u) shows an example. Now convert one or more of the 
component waves into evanescent waves, by giving their directions a small imaginary part. 
This perturbed superposition will have a new nodal line L, sIightly perturbed from the old 
one, and will be a Dirichlet mode of the B with this new L: as boundary; figure l(6) shows 
an example. 

U 
-2 - I  0 1 2 

I 
-2 - I  0 1 2 

Figure 1. (a) Contours of RehIdr)  + @2X/3(r) + @-&D(r)t, which is a Dirichlet mode 
of the domain B whose bonndaq-the outennost contour-is the nodal line C (which looks 
circular but in fad deviates from circularity by about 1%). (b) As (a) but for Re(~o. , i (r)  + 
@~x//xo.II(T) + @ - z q ~ , ! i ( r ) ] ;  this is a mode composed entirely of evauexent waves. 

I expect that, apart from some special cases such as the circle, the occumnce of 
evanescent waves in quantum billiard modes will be typical. Faddeev (1966) contemplated 
the use of growing solutions of wave equations to describe scattering, and evanescent 
waves have appeared in numerical computations for the B consisting of a quadrilateral with 
angles 90". 90°, 45" and 135" (Richens and Berry 1981). On the other hand, a successful 
numerical method is based on representing as a superposition containing only real plane 
waves (Heller 1991). 
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This apparent discordance between numerical methods, and also the apparent 
impossibility of extending modes containing evanescent waves outside B to become 
scattering superpositions, have a common origin, namely the apparent incompleteness of the 
set of real plane waves as a basis for representing general solutions of (1). At first thought, 
this incompleteness seems obvious. For example, how can the evanescent wave (3). which 
oscillates along x faster than the wavenumber k, be represented in terms of real plane waves, 
which oscillate along x at a rate which depends on duection but which never exceeds k? 
Surprisingly, such a representation can be constructed with arbitrary accuracy. It constitutes 
a two-dimensional generalization of ‘superoscillatory’ functions of a single variable, which 
oscillate over arbitrarily long ranges arbitrarily faster than any of their Fourier components. 
I have recently investigated the properties of these curious functions (Beny 1994) following 
a suggestion of Aharonov etal (1990). 

One representation of the evanescent wave (3) as a superposition of real plane waves is 

= li&@~(r) where 

The intuition behind this formula is that in the limit A + 0 the Gaussian factor acts like a 
&function which selects the plane wave with a. = iA, which is evanescent. Of c o m e  this 
argument is not rigorous because iA lies outside the range of integration. Nevertheless (4) 
does describe an evanescent wave. This can be shown in several ways, as follows. 

Substituting (2) into (4) we see that for small A the integral @A is dominated by the 
Gaussian saddlepoint at a = iA, through which, as can easily be shown, it is possible 
to deform the integration contour. The evanescent wave (3) is then obtained immediately. 
I used this technique (Berry 1994) to study a variety of superoscillatory functions. The 
method reveals the price to be paid for superoscillations. Far from the origin, that is for 
r >> l/A*, the saddle moves from iA towards tan-‘(y/x) and @A oscillates normally, that 
is with the prescribed wavelength 2n/h, but is exponentially large in comparison with its 
values near the origin where it superoscillates. 

For the particular function (4) the integral can be evaluated exactly and @A understood 
in more detail. Elementary transformations give 

x l I d a e x p [ ( & c o s h A + i k x  

(5) 

This can be written in terms of the modified Bessel function l a  (Abramowitz and Stegun 
1972): 

xlo[,/(-&coshA+ikx 
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For small A we can use the asymptotic approximation 

and show that @A reduces to the evanescent wave (3) when r << I/Az. 
What has been shown is that the superposition (4) of real plane waves with the same 

k, which could be employed for example in a scattering experiment, does indeed reproduce 
the evanescent wave (3) in the limit A --f 0. Therefore if the scattering space is augmented 
to include such singular superpositions, all modes confined in B, including those containing 
evanescent waves, can be extended outside as scattering waves for which B is transparent. 
To understand the singular nature of the limit, it is convenient to relate Ob to planar 
analogues of the Gaussian beams of (for example) laser physics (Siegman 1986). 

After defining 

where Jo(z) = Zo(iz) is the Bessel function of the first kind, we can write 

The function G is that exact non-singular solution of (1) which in the paraxial approximation 
represents a Gaussian beam. To see thii, we expand the Bessel function for large 
P >> JB2 + qz), and obtain 

which closely resembles the standard expression for a (three-dimensional) Gaussian beam 
(Siegman 1986). with p denoting the radius of the beam waist. From (9) we now arrive at 
the following interpretation of the planewave representation (4): the evanescent wave (3) is 
the local behaviour of a Gaussian beam G, of (large) radius coshA/kA2, on its side slopes 
near (0, sinh A/kA2) .  In the limit A --f 0, this local behaviour extends over an infinite 
range of x and y. 

On its evanescent side slopes, G is exponentially smaller than on its axis 9 = 0, since 

A measure of superoscillation on these side slopes is the increase with q of the local 
wavenumber 

= fkp ( v = p ) .  
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The most rapid superoscillations, bigger than k by a factor p/2, therefore occur when q is 
close to p. which from (11) implies IGI - exp{-p}. 

Each evanescent wave contributing to a confined mode of ,3 can therefore be 
approximated by appropriately-dmted Gaussian beams aimed off-axis at B, with impact 
parameter corresponding to its evanescence parameter A (equation (3)). For example, the 
mode shown in figure l(b) could be approximated by three such Gaussian beams whose 
axes form an equilateral triangle containing B. Better approximations need larger p (or 
smaller A), which implies (from (11)) that B lies in regions where the scattering beam is 
exponentially small relative to its largest values. Therefore transparency to scattering is 
unlikely to be a sensitive means of detecting modes containing evanescent waves. 

Figure X Gaussian beam C(6.q. p) (equation (8)) for p = 50. (a) Nodal domains of Re G 
(white positive, black negative). @)Contours of loglo IGI (increasing upwards). To the accuracy 
of the pic-. thehe contours are also flow lines of the current ImC'VC. (c)  Magnification of 
(b). showing zems of IC1 (black dots), which are also vortices of current and phase dislocations. 
(d) Phase contours (wavefmnts) of C. at intervals of n/Z, showing wavehnt dislosations where 
all phases meeI, and, between them. phase saddles. 

Pictures of the exact Gaussian beam (8) are instructive. Figure 2(a) shows the nodal 
line of Re G for p = 50. For small 6 they crowd close together as q increases, provided 
1 ~ 1  is less than the beam radius p. This crowding indicates that G superoscillates in this 
region. (It is amusing to note that these nodal lines are closed when the picture is reflected 
in the 6 axis and so could represent the boundaries L of a set of domains B within which 
ReG is a confined mode.) Figtire 2(b) shows the contours of IGI, whose exponential decay 
away from the beam axis q = 0 indicates l&al evanescence. 

If this picture is magnified (figure 2(c)), small dark spots become visible on the q axis for 
171 z p. These are zeros of the complex function G, that is wavefront dislocations (Nye and 
Berry 1974, Berry 1981) where the phase x of G is singular (figure 2(d)). Although they lie 
in a region where the beam intensity is numerically insignificant (IC] = 0 exp(-p)), they 
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play an important role in the global organization of the energy current. For reasons explained 
in the appendix, the current lines coincide approximately with the intensity contours in 
figures 2(b) and 2(c). Current flows from negative to positive 5 ,  with an q component 
whose sign is signc signq except near the segments lql z p of the 11 axis. There, the 
interference of the counterflowing currents (up and down the q axis), generates vortices 
circulating about the dislocation points (see Hirschfelder et al 1974a, b, Hirschfelder and 
Tang 1976a. b, for examples of wave vortices in quantum mechanics). The dislocations close 
to q = p provide dramatic illustrations of superoscillations, because they are topological 
structures separated by scales much smaller (by a factor of order l / p )  than the wavelength 
of the waves in the beam. As q increases, so does the dislocation spacing, which gradually 
approaches z. 

It is also instructive to explore the evanescent-wave and superoscillation aspects of the 
more familiar threedimensional Gaussian beams. For a beam travelling in the c direction, 
with perpendicular coordinates q and <, the counterpart of (8) is 

sin {,/(e - ip)z + 112 + <z] 

Jtg - ip)2 + 112 + (2 
tl. <, P) = 2pexp(--P) (13) 

Expansion near the axis gives (lo) with qz replaced by q2 + F2 and without the factor 2 in 
the denominator. The wave that is evanescent on the side slopes-the counterpast of @)-is 

sinhA A2 ' coshAI Az 
1 exp { 2Sinh2f'2)] G3 [ kx, k y  + 7, sinh A kz  + - - 

*3,A(T, A) - coshA 

( 1 4  
(where now T = ( x , y . z ) ) .  Near the x axis and with lkxl < coshA/A2, this is an 
evanescent plane wave travelling in the x direction and decaying along the positive y and 
z directions: 

%.A(T, A) + exp{ikx cosh A] exp ( -k (y  + z )  sinh A/&] .  (15) 

Like their two-dimensional counterparts, the waves (13) and (14) are superpositions 
of real plane waves whose wavevectors have the same length. For example, (13) can be 
written as 

1 
G 3 K .  v7 C. P) = -i;;pexp(-p) // dzQ 0 - ip, 11, 0 1  (16) 

m.1 sphers 

where S2 denotes a unit vector in three dimensions. A similar formula enables (14) to be 
expressed as a superposition of real plane waves with wavenumber k .  On the x axis this 
can be Written (after evaluating one of the angular integrals) as 
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which is a superposition of Fourier components band-limited by f k  (it corresponds to the 
representation (4) with q = kcosru). It is a superoscillatory function of x ,  as is shown by 
the following limiting forms (easily checked by computation):’. 

@ ~ , A ( ( X ,  O,O), A) = exp[ikn cosh A] 

2 sinh2{A/2) 
Az ] 

d explikx] 
iA2kx 

This is interesting because it exemplifies a superoscillatory function composed entirely of 
elementary functions, a possibility not envisaged by Beny (1994). ~ 

A final remark concerns the standard theory of non-paraxial Gaussian beams. In this 
theory (see, e.g., Siegman I986), the formulae (8) and (13) are written with JO replaced by 
the outgoing Bessel function If:)(. . .) and its three-dimensional counterpart sin(:. .)/ . . . 
replaced by the outgoing wave exp[i . ~ .I/.  . .). It is then noted, following Deschamps (1971) 
(see also Felsen 1976), that these correspond waves emerging from a~complex source 
on the 5 axis at t = ip,. However, although in the paraxial regime these waves reduce 
to ~(10) and its three-dimensional analogue, they possesses singularities at the real points 
(0, zkp) and on the real circle (k  = 0, q2 + c2 = p2). whence branch cuts issue to infinity. 
Therefore they are inappropriate as representations of frkly-propagating beams. Rerated to 
this is another property which makes the and exp[i . . .)/ . . . waves unsuitable for our 
present purpose: they consist of superpositions involving complex directions, and therefore 
evanescent waves. The representations (8) and (13) avoid these disadvantages. 

I thank Professor Uzy Smilansky for conversations which led to this work. 

~ 

Appendix. Current lines and intensity contours 

The energy current is Im G*VG, which is parallel to Vx. To the accuracy of figures 2(b) and 
2(c), the current lines are identical to the contours of the intensity ]GI. This is not obvious. 
In most of the T plane, this is except for the immediate neighbourhood of the 5 axis and the 
segments lql > p of the q axis, the smallness ( O ( l / p ) )  of the angle between the two sets of 
lines follows from the ‘single-wave’ approximation (7), in which the exponential dominates. 
It is a consequence of the orthogonality of the real and imaginary parts of the gradient of 
the complex distance ,/[(e - io)* + 17’1, and this in turn follows from the complexified 
Hamilton-Jacobi equation. 

Near 1q1 > p on the q axis, (7) breaks down because its single exponential must be 
supplemented by i exp[+z] (this quantity is negligible elsewhere). In this region too the 
lines of Vx and the contours of IGI are very similar, because they are locked together by 
two sets of coincident singularities. First are the current vortices (phase dislocations) and 
zeros of IGI, generated by the interference of the two waves. These sets of points coincide 
(at zeros of J ~ [ z / ( q ~ - p ~ ) ] ) .  Second are the stagnation points of current (phase saddles) and 
the saddles of IGI, which lie between the dislocations. These sets of points also coincide (at 
zems of J1 [J(q2-p2)]).  A calculation shows that the angle between the intensity contours 
and the current lines is a, where 
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in which f and the complex unit vector t are defined by 

Numerical evaluation shows that (Y c 3" (and is generally very much smaller) for the 
contours shown in figures 2(b) and 2(c). 

The V,y lines and the [GI contours are, however, discordant (i.e. a is large) in a 
very narrow strip enclosing the axis, where the intensity contours and current lines are 
perpendicular (these lines are not shown in figure 2(b)). 
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